
Analysis and Optimization of the Emergency
Department at Beth Israel Deaconess Medical

Center via Simulation

by

Clay W. Noyes

B.S. Operations Research

United States Air Force Academy, 2006

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Master of Science in Operations Research
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

c© 2008 Clay W. Noyes. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part in any medium now

known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sloan School of Management

Interdepartmental Program in Operations Research
May 15, 2008

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Francis Carr

Charles Stark Draper Laboratory
Technical Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dimitris Bertismas

Boeing Professor of Operations Research
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cynthia Barnhart

Professor of Civil and Environmental Engineering
Codirector, Operations Research Center



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 JUN 2008 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Analysis and Optimization of the Emergency Department at Beth Israel
Deaconess Medical Center via Simulation 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Massachusetts Institute of Technology 

8. PERFORMING ORGANIZATION
REPORT NUMBER 
CI08-0013 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
The Department of the Air Force AFIT/ENEL, Bldg 16 2275 D Street
WPAFB, OH 45433 

10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

69 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Analysis and Optimization of the Emergency Department at

Beth Israel Deaconess Medical Center via Simulation

by

Clay W. Noyes

Submitted to the Sloan School of Management
on May 15, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Operations Research

Abstract

We develop a simulation model based on patient data from 2/1/05 to 1/31/06 that
represents the operations of the Emergency Department at Beth Israel Deaconess
Medical Center, a Harvard teaching hospital and a leading medical institution. The
model uses a multiclass representation of patients, a time-varying arrival process mod-
ule that uses multivariate regression to predict future patient arrivals, and a service
module that takes into account the fact that service times decrease and capacity in-
creases when the system becomes congested. We show that the simulation model
results in predictions of waiting times that closely match those observed in the data.
Most importantly, we use the simulation model to propose and analyze new policies
such as increasing the number of beds, reducing the downtime between patients, and
introducing a point of care lab testing device. The model predicts that incorporating
a suite of these proposed changes will result in 21% reduction in waiting times.
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Chapter 1

Introduction

The Emergency Department (ED) of the Beth Israel Deaconess Medical Center (BIDMC)

has invested in creating a “Dashboard” software system. The data underlying the

Dashboard is an accurate, thorough and real-time representation of the status of the

ED, including information about patients in the ED and about ED resources such as

staff and beds. Such complete and reliable data has provided opportunity for in-depth

analyses of ED operations and exploration of possible improvements.

The purpose of this thesis is twofold. The first goal is to present a model of the

ED operations for performance analysis. This model includes the arrival rates of new

patients to the ED, the “flow dynamics” once patients arrive, and the length-of-stay

and impact on ED resources of current ED patients. This modeling effort relies on

the expertise of ED staff and on the analyses of 1 year of anonymized Dashboard data

provided by BIDMC. The second goal is to propose policies for improving the “flow

management” of the ED and evaluate them using a Monte Carlo simulation model.

We have evaluated four such policy changes: adding extra beds to allow greater

capacity in the ED; an improved bed “flip” policy which reduces the time spent clean-

ing beds between patients; a new “Point of Care” (POC) lab test for troponin which

promises to greatly reduce the time in the ED for patients with chest pain symptoms;

and a “nested bed policy” which reserves some ED bed capacity in anticipation of

the possible arrival of more acute patients.

Simulation results indicate that adding an extra bed, reducing the bed “flip” time,
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and introducing a POC troponin test can significantly reduce patient waiting times

and overall patient length of stay. Additionally, reserving an extra bed for more

acute patients can reduce waiting times for these classes of patients at the expense of

increased waiting times for the less acute patients. The simulation model gives ED

staff the capability to evaluate this and other proposed policy changes to determine

tradeoffs and seek improvements to current operations.

Simulation analysis of hospital and emergency department operations is not new.

Hancock and Walter [13] first applied simulation to hospital systems to improve

scheduling of staff, admissions, and surgery. Saunders et al. [20] sought to quantify

the effect that the number of physicians, nurses, and beds had on patient through-

put time. Jun et al. [15] present a survey of discrete-event simulation in health care

clinics. Kim et al. [16] utilize actual data from a hospital’s intensive care unit to

analyze the policies for admission and discharge of patients. Harper [14] provides a

framework for modeling hospital resources and discusses using simulation to develop

more sophisticated hospital capacity models. Connelly and Bair [8] use simulation to

compare two different patient triage methods in an emergency department. Blasak

et al. [5] and Samaha et al. [19] present separate simulation models to evaluate pos-

sible alternatives for reducing length of stay in an emergency department. Komashie

and Mousavi [17] use discrete-event simulation to model an emergency department

and explore waiting times. Cochran and Bharti [7] present a stochastic model of the

“flow” of patients to and from various hospital departments and use discrete-event

simulation to maximize “flow” through the system. Duguay and Chetouane [9] use

discrete-event simulation to reduce patient waiting times and improve throughput by

adding resources.

Additionally, a McCallum Graduate School team from Bentley College has ana-

lyzed one year of ED data from BIDMC in order to identify process inefficiencies and

recommend solutions with the goal of reducing patient throughput time [10]. In this

thesis we use simulation analysis to further evaluate the proposals of the Bentley team

and quantify the impact that these and other proposals will have on ED operations

at BIDMC.
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The outline of this thesis is as follows. In Chapter 2, we present the simulation

model including the relevant parameters, all of which are based on available data. In

Chapter 3, we validate the simulation model by comparing simulation results to the

actual data. In Chapter 4, we propose and evaluate policy changes. In Chapter 5, we

consider further extensions to our work. Chapter 6 contains our conclusions.

15
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Chapter 2

Simulation

In this chapter, we develop a model of the arrival and “flow” of patients through the

ED at BIDMC. We begin by describing the available data and basic observations,

and then develop the relevant parameters for each module of the model.

2.1 Data and Basic Observations

Each patient in the ED at BIDMC goes through a series of processes including triage,

registration, waiting in the waiting room, bed assignment, assignment to one or more

nurses, residents, and attending physicians, lab tests, radiology exams, diagnosis,

treatment, and admission or discharge. In general, relevant information about each

of these processes is recorded in the Dashboard data collection system, including a

timestamp for when it occurs or when it starts and ends.

The first such timestamp occurs immediately upon each patient’s presentation to

the ED. Once the patient undergoes triage, more information is recorded, including

severity or acuity level on a scale of 1-5, also known as the Emergency Severity Index

(ESI). When a patient is registered, important information about the patient is also

recorded including a visit number, a permanent patient number, their date of birth,

and their chief complaint.

Several timestamps occur simultaneously when a patient leaves the waiting room.

Timestamps record when the patient leaves the waiting room, when the patient is

17



placed in a bed, and when the patient is seen by a nurse, a resident, and an attending

physician. The bed number is also recorded.

As the patient undergoes diagnosis and treatment, the Dashboard records infor-

mation about which labs and radiology exams are ordered, when they are ordered,

when they are processed, what the results are, and when the results became available

to the patient’s clinicians. The system also records the final disposition of the pa-

tient (usually admitted or discharged but occasionally something else) and the final

diagnosis/diagnoses, which are encoded using the standardized International Classifi-

cation of Diseases (ICD). The Dashboard records when an inpatient bed is requested

for patients who will be admitted, when that bed is assigned, and when that patient

is finally admitted. It also records when each patient leaves the ED (whether to be

discharged, admitted, or transferred, etc.).

BIDMC has provided patient visit data for all visits to the ED from 2/1/05

to 1/31/06. This includes 47,537 patients. Also included in the data is the sta-

tus/utilization of ED resources in 10 minute time-slices.

Based on analysis of the available data and discussion with ED staff, we have

chosen to model ED operations with beds as the critical resource and ESI or triage

level as the primary method to distinguish patient type. We also considered a model

of the ED with nurses as the critical resource. However, beds seemed to be the

most critical resource based on the frequent overcrowding in the ED and the use

of temporary hallways spaces to try to accommodate patient demand. Furthermore

there was no significant correlation in the data between additional nurses and faster

service times. We also considered separating the patients based on final disposition

(admit or discharge or observation) or final diagnosis (clusters of ICD codes), but ESI

level proved to be the most relevant way to classify patients, especially considering

that bed assignment priority is generally based on patient ESI level.

The model (Figure 2-1) used to analyze ED operations consists of 5 processes:

arrival, triage and registration, waiting in the waiting room, diagnosis and treatment,

and exit. We will now discuss each of these processes.

18



Figure 2-1: BIDMC Emergency Department Simulation Model.

2.2 Arrival Process

One of the main challenges faced by emergency departments is the fluctuating nature

of arrivals. While patient demand is often predictable there are occasional surges

which stretch resources beyond capacity and leave hospital staff feeling overworked

and hospital patients feeling neglected. Researchers have identified emergency depart-

ment crowding as a major barrier to receiving timely emergency care in the United

States [1]. It is also on the busiest days that patient waiting times reach their high-

est levels. In order to perform reliable analysis of ED operations, it is necessary to

incorporate in the model an accurate estimate of patient arrival rates which accounts

for these fluctuations.

Table 2.1 shows the results of linear regression analysis to predict the number of

arrivals to the ED in 8 hour blocks. Using a random 70 percent of the data points

to generate the model, the resulting value of R2 is 0.84. Using the remaining 30

percent of the data to test the model, the R2 value is 0.84 (Table 2.2). Results of the

regression indicate that time of day has the greatest impact on the arrival rate. The

19



period from 8 am to 4 pm is the busiest period of the day in terms of arrivals while

the period from midnight to 8 am is the slowest. Arrivals are observed to occur more

frequently on weekdays than on weekends, and there is a positive correlation between

the arrival rate at a given point in time and the number of arrivals that occurred

between 48 and 96 hours prior to that moment.

Table 2.1: Demand Prediction Linear Regression Analysis.

Variable Estimate Std.Err. t-Statistic

(Intercept) 28.99 3.42 8.49

Time of Day (midnight to 8 am) -24.66 0.4 -61.61

Time of Day (8 am to 4 pm) 17.55 0.4 44.06

Time of Day (4 pm to midnight) 7.11 0.41 17.4

Day of Week (Weekend) -1.93 0.31 -6.14

Day of Week (Weekday) 1.93 0.31 6.14

Number Arrivals 48-96 hours earlier 0.05 0.01 4.14

Table 2.2: Demand Prediction R-Squared.

Data Set R2

Training Data (70 percent) 0.84

Test Data (30 percent) 0.84

The model in Table 2.1 is what we consider our best model because of its simplicity

and high correlation to historical data. Several other models were considered with

various combinations of the variables used above and the following variables which

were not used in our best model:

• Time of Day in 1 hour blocks

• Time of Day in 6 hour blocks

• Time of Day in 12 hour blocks

• Time of Day in 24 hour blocks

• Day of Week (Mon, Tues, Wed, Thurs, Fri, Sat, Sun)

20



• Day of Week (Monday, Midweek, Friday, Saturday, Sunday)

• Number of Arrivals 0-4 days earlier in 8 hour blocks

• Number of Arrivals 0-4 days earlier in 12 hour blocks

• Number of Arrivals 0-4 days earlier in 24 hour blocks

• Holiday

• Temperature and Precipitation

The arrival rates used in the simulation model are generated from the linear

regression analysis in Table 2.1. Within each 8 hour block there is an arrival rate

predicted by the linear regression coefficients based on time of day, day of week, and

previous arrivals. Patient inter-arrival times within this 8 hour block are sampled

from an exponential probability distribution at the prescribed arrival rate.

To further clarify how arrivals are sampled in the Monte Carlo simulation based on

the model, it is helpful to understand how the simulation clock functions. At a given

time within the simulation, the arrival rate is predicted based on time of day, day

of week, and previous arrivals. The units for time within the simulation are hours,

and the simulation clock is initialized at midnight on a Monday. The time of day

and day of week are computed using the modulus function. These indicator variables

determine which coefficients are used from Table 2.1 to calculate the arrival rate. The

previous arrivals variable is computed by looking at the current simulation time and

counting the number of arrivals that occurred between 48 and 96 hours prior to that

moment. The number of previous arrivals is multiplied by the appropriate coefficient

and added to the intercept coefficient and appropriate time of day and day of week

coefficients to calculate the arrival rate. Inter-arrival times are then generated from

an exponential distribution according to the calculated rate.

2.3 Service Times

There are three different aspects of service that occur in the model: the triage process,

diagnosis and treatment, and the bed cleaning or “flip.” In this section we discuss

each of these aspects and how they are represented in the model.
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2.3.1 Triage Times

It is during triage where the ESI or acuity level is determined for each patient. This

index helps give ED staff an estimate of the resources a patient will require as well as

the priority in which the patient should be seen. Patients classified as ESI-1 are the

most acute patients and require immediate attention. Patients classified as ESI-5 are

the least acute and can safely wait many hours to be treated. Table 2.3 shows the

number and percentage of arrivals for each ESI level from 2/1/05 to 1/31/06.

Table 2.3: Patient Acuity (1 = Most Acute, 5 = Least Acute).

Number of Arrivals Percentage of Patients

ESI-1 1165 2.45%

ESI-2 10910 22.95%

ESI-3 28372 59.69%

ESI-4 6756 14.21%

ESI-5 332 0.70%

Total 47535 100.00%

Although triage times were not explicitly captured in the Dashboard, there was

one timestamp when each patient presented to the ED, and another timestamp when

each patient left the waiting room. Triage occurred at some point between these two

timestamps and although not all of this time was necessarily spent in triage (much

of the time is often spent waiting for an available room or nurse), we presume that

the time patients spent “waiting” when no other patients were in the waiting room

is very likely to have been time spent in triage. (It is possible to recreate from the

data the number of patients already waiting in the waiting room when each patient

arrived.) Triage times were therefore estimated to be the time patients spent waiting

to leave the waiting room (i.e., time from presentation until leaving waiting room)

when the waiting room was empty upon their arrival. Table 2.4 summarizes these

triage time statistics. The average triage time per patient is 15.4 minutes. This time

is lower for more acute patients who are often rushed into a bed immediately upon

arrival.
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Table 2.4: Triage Time Distribution (minutes).

All Patients ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 15.4 2.1 8.0 17.0 22.4 20.0

Standard Deviation 19.9 8.6 9.8 21.1 23.3 16.2

99th Percentile 96.0 41.9 44.0 102.1 116.8 68.7

95th Percentile 51.0 11.9 26.0 53.0 66.8 50.4

90th Percentile 36.0 1.0 19.0 39.0 50.0 41.1

75th Percentile 20.0 0.0 11.0 22.0 29.0 25.8

50th Percentile 9.0 0.0 5.0 11.0 15.0 16.5

25th Percentile 4.0 0.0 1.0 5.0 8.0 8.0

10th Percentile 0.0 0.0 0.0 1.0 4.0 5.0

5th Percentile 0.0 0.0 0.0 0.0 2.0 3.7

1st Percentile 0.0 0.0 0.0 0.0 0.0 2.1

2.3.2 Waiting Room Policy/Priority

Patients of ESI-1 are given first priority to leave the waiting room when rooms become

available. ESI-2 patients are given the next priority. ED policy states that ESI-3

patients would have next highest priority, followed by ESI-4 and ESI-5. However, the

data shows that often the less acute patients (ESI-3, 4, and 5) are not necessarily seen

in order of priority, and in fact are often assigned beds on a first-come first-serve basis

(FCFS) regardless of their relative ESI. The model incorporates this latter strategy,

as depicted in Table 2.5.

Table 2.5: Waiting Room Priority.

Acuity Level Priority

ESI-1 Highest

ESI-2 2nd Highest

ESI-3 Lowest–FCFS

ESI-4 Lowest–FCFS

ESI-5 Lowest–FCFS
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Based on on-site ED observations and informal interviews with ED staff, it be-

came clear that although beds are assigned to patients based on ESI classification,

with the more acute patients receiving higher priority than less acute patients, these

classifications are not always absolute. For example, occasionally a patient will be

classified as ESI-2, but because the symptoms may stabilize, that patient may not be

assigned a bed until after several ESI-3 patients. Also, because triage is done quickly

and prior to more detailed diagnosis, it is not uncommon for patients to be triaged

incorrectly, i.e., lower or higher than their condition is later found to warrant.

We have chosen to use a small amount of randomization in the model to help

approximate this effect on the bed assignment priorities. Because the Dashboard

system does not record ESI misclassifications, we have estimated that approximately

2% of ESI-1 and ESI-2 patients may have been misclassified.

2.3.3 Diagnosis and Treatment

Currently at BIDMC there are 46 rooms in the ED. One room is reserved for severe

trauma patients and the remaining 45 rooms can be used by patients of any ESI.

Technically the rooms of the ED are divided into zones with special purposes such as

observation, fast track, or acute zones. However, each room can be used for treating

any type of patient. For the model all rooms are considered equal, with the exception

of one room reserved for the acute ambulance arrivals. Although in reality patients

can be and often are reassigned from room to room, for the simulation a patient is

assigned to one room only and eventually departs from the originally assigned room.

Note that this simplification does not affect the role of rooms as a limiting resource

in the ED.

Bed times are explicitly recorded in the Dashboard system and the statistics of

these times are used in the model (Table 2.6). Although ESI-1 patients have the

most serious conditions and require the most ED resources, they have shorter bed

times than ESI-2 and ESI-3 patients because they are almost always given inpatient

beds immediately when admitted to the hospital. Other less acute patients generally

have to wait much longer to be admitted from the ED into the hospital. ESI-4 and
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ESI-5 patients have the shortest average bed times simply because their conditions

are usually so minor that they can be treated quickly and discharged.

Table 2.6: Bed Time Distribution (hours).

All Patients ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 6.46 5.69 8.41 6.63 2.95 1.85

Standard Deviation 5.77 4.47 6.27 5.70 3.24 1.92

99th Percentile. 27.75 22.43 30.00 27.51 18.52 11.46

95th Percentile 18.80 14.98 22.32 18.90 7.89 4.71

90th Percentile 13.12 11.80 16.70 13.37 5.37 3.45

75th Percentile 8.08 6.99 9.82 8.23 3.35 2.28

50th Percentile 4.90 4.47 6.69 5.06 2.17 1.42

25th Percentile 2.73 2.78 4.62 2.98 1.35 0.77

10th Percentile 1.48 1.71 3.12 1.73 0.75 0.33

5th Percentile 0.93 1.07 2.27 1.07 0.40 0.13

1st Percentile 0.05 0.21 0.73 0.03 0.00 0.00

2.3.4 Patient Exit/Bed “Flip”

Historically at BIDMC, approximately 65% of ED patients are discharged while ap-

proximately 30% are admitted. (The rest are transferred, leave before receiving full

treatment, or otherwise exit the system.) Because the model is restricted to the ED

and not the entire hospital, when a patient exits he or she simply vacates the assigned

bed and leaves the system. After the bed/room is cleaned it becomes available for

the next patient.

Bed cleaning times are not explicitly recorded by the Dashboard system. There is

data available for when beds are occupied versus how long beds sit empty. The bed

cleaning or “flip” time must therefore be some portion of the time the bed sits empty.

In order to estimate the bed “flip” times we presume that when the ED is very busy

(i.e., many people in the waiting room) the bed “flip” process will begin as soon as

the bed is vacated and once the bed “flip” is complete, the highest priority patient
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will be immediately assigned to the now available bed. Figure 2-2 plots the mean,

median, and standard deviation for the empty bed times versus number of patients

in the waiting room for the core zone beds, which are the most commonly used beds

in the BIDMC ED.

Figure 2-2: Empty Bed Times versus Number of Patients in Waiting Room.

It was interesting to discover that as pressure mounts on the system, the time

that beds sit empty decreases. This may indicate that the work rate increases and

beds are cleaned faster as the number of people in the waiting room grows large, or

simply that as more people arrive they are placed in beds faster.

For the simulation, the bed “flip” times are just the average time a bed sits empty

as found in Figure 2-2. For example, when there are 5 or fewer people in the waiting

room, the bed “flip” takes 37.6 minutes, when there are 6 to 10 people in the waiting

room, the bed “flip” lasts for 22.2 minutes, etc.
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2.4 Flexible Capacity

One of the most difficult aspects of the ED to model is the frequent use of hallway

beds. Although there are 46 permanent rooms in the ED, there are also extra beds in

which patients can be placed and moved into hallway spaces. This increased capacity

allows the ED to accommodate over 60 patients on those rare occasions when demand

is at its highest. The decision to use hallway spaces when real beds become full,

however, is not always automatic. Sometimes patients are placed in hallway beds,

but sometimes patients remain in the waiting room until a real bed becomes available.

Our first attempt to model the ED did not include these hallway spaces. After

consultation with ED staff and further investigation we realized that our model with

a fixed capacity of 46 beds excluded two important phenomena. The first and most

obvious omission was that the ED is capable of handling more than 46 patients at a

given time due to the practice of placing and administering to patients in temporary

hallway spaces, and thus 46 beds would seem to underestimate the true capacity

of the ED. However, the predicted waiting times generated by our model with 46

beds seemed relatively accurate and adding even 1 bed caused our model to process

patients much faster than was observed in the data. This helped us realize a more

subtle omission, which is that often the ED capacity is effectively less than 46 beds.

Figure 2-3 shows the number of patients in the waiting room versus the number

of patients occupying beds in the ED. This figure illustrates the fact that often the

capacity of the ED is less than the 46 permanent rooms. For example, although the

department is capable of treating over 60 patients simultaneously, the average number

of patients in the waiting room steadily increases even before there are 40 patients

being treated in the ED. Thus, it would appear that some sort of soft limit is being

approached before the bed capacity limit is reached. This can be attributed to the

fact that a portion of the ED closes during late night hours, and also that in some

circumstances it is more desirable to allow a patient to remain in the waiting room for

a few minutes rather than placing that patient in a bed immediately. This decision is

based on chief complaint, triage level, staff availability, anticipation of future demand,
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and/or other factors.

Figure 2-3: Number of Patients in Waiting Room versus Number of Patients in ED.

Figure 2-4 shows the average number of patients being seen in the ED versus the

number of patients in the waiting room. Note that as the number of patients waiting

increases, the average capacity of the system also increases. With 4 patients in the

waiting room, the effective capacity of the ED is approximately 40 patients, while with

12 patients in the waiting room, the effective capacity of the ED is approximately 50

patients. This observation indicates that although the capacity can reach upwards of

60 patients, most of the time it is not desirable to immediately use a hallway space.

However, as the length of the waiting room queue grows, the hospital staff is forced

to use these hallway spaces to accommodate the growing demand.

We next propose how to model the flexible character of the capacity. In contrast

with several other parameters of the model which we were able to estimate explicitly

from the data, it was necessary to make an implicit estimate of the parameters for

the flexible capacity. We approximated the flexible capacity phenomenon using 4
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Figure 2-4: Number of Patients in ED versus Number of Patients in Waiting Room.

parameters. These parameters are described in Table 2.7 and depicted graphically in

Figure 2-5.

Table 2.7: Flexible Capacity Parameters.

Parameter Description

α Length of queue at which capacity starts to increase

β Length of queue at which capacity reaches maximum

γ Capacity when queue is empty until queue length is alpha

δ Capacity when queue length is greater than beta

Although there are many factors that can affect how many beds can be used at

any time, including time of day, day of week, number and type of patients already

in beds, number and type of patients in the waiting room, and staffing level and

ability, we have chosen to model this complex phenomenon using four parameters.

We assume there exists a minimum capacity level (denoted γ), the number of beds

that are always available for use. This is also the maximum capacity of the system
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Figure 2-5: ED Capacity as Function of Queue Length.

when the waiting room is empty. We assume there to be a higher capacity level

(denoted δ), the maximum number of beds that are ever available for use, even when

the number of patients in the waiting room queue is very large. In other words,

capacity will never exceed this value. Finally, α is the size of the queue at which

capacity begins to increase and β is the size of the queue at which capacity reaches

its absolute maximum.

In order to identify the best fit for α, β, γ, and δ, we developed a scoring system

to rank how closely the simulation matches the data when using a given set of pa-

rameters. This scoring system is based on the predicted and actual mean, standard

deviation, and 99th, 95th, 90th, 80th, and 50th percentiles for the waiting time for all

ED patients as well as for each of the 5 ESI classes. We ran the simulation with

different values for α, β, γ, and δ, and then we used the scoring system to determine

which values yielded waiting times for the simulation that most closely matched the

data.

To calculate the score for each particular run of the model, we used the sum
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of weighted averages of the absolute deviation of waiting time statistics from the

simulation to reality (Equation 2.1). The weights are shown in Table 2.8.

Score =
∑
all i,j

Weightij · |Simulationij − Actualij|

where i = {Mean, Standard Deviation, 99th Percentile, 95th Percentile,

90th Percentile, 80th Percentile, 50th Percentile}

where j = {All Patients, ESI-1 Patients, ESI-2 Patients, ESI-3 Patients,

ESI-4 Patients, ESI-5 Patients}

(2.1)

Table 2.8: Weights for Absolute Deviation of Waiting Time Statistics Used in Scoring
System.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 25.0 5.0 5.0 5.0 5.0 5.0

Standard Deviation 15.0 2.0 2.0 2.0 2.0 2.0

99th Percentile 2.0 1.0 1.0 1.0 1.0 1.0

95th Percentile 2.0 1.0 1.0 1.0 1.0 1.00

90th Percentile 2.0 1.0 1.0 1.0 1.0 1.0

80th Percentile 2.0 1.0 1.0 1.0 1.0 1.0

50th Percentile 2.0 1.0 1.0 1.0 1.0 1.0

We considered 5,184 models which included various combinations of the four pa-

rameters. We tested values of α ∈ {0,..,8} and β ∈ {10,..,18}. We tested γ ∈ {38,..,45}

and δ ∈ {46,..,53}.

The model with the best score had a value of 1 for α, 16 for β, 43 for γ, and 47

for δ. The score for this model was 4.758. Scores for the top 10 models are presented

in Table 2.9. To perform our analysis and investigate “what-if” scenarios we used the

parameters from the best model. It is important to note that the waiting times for all

of the models in Table 2.9 were very close to the actual waiting times at BIDMC and

any of these models could have been used to investigate the effects of making changes

to the ED. The final score of the closest simulation model before including flexible
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capacity was 7.901 and the overall average waiting time for the simulation was lower

than the actual overall average waiting time by 6.05%. By introducing the concept

of flexible capacity we found a model that more closely matches the historical data

from BIDMC: the score decreased from 7.9 to 4.8 and the error in the overall average

waiting time dropped from 6.05% to 0.28%.

Table 2.9: Flexible Capacity Parameters Yielding Best (Lowest) Scores.

α β γ δ Score

1 16 43 47 4.758

0 18 43 47 4.785

4 13 43 47 4.831

4 14 43 47 4.845

1 10 43 46 4.850

4 15 43 47 4.865

3 17 43 47 4.886

3 14 43 47 4.936

3 13 43 47 4.944

2 17 43 47 4.956
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Chapter 3

Model Validation

We have been careful to ensure that the arrival rates, triage times, waiting room

priority, bed times, and bed cleaning times accurately reflect the actual times and

processes that occur at BIDMC. Several other criteria have been used to gauge how

accurately the simulation model matches the data. These criteria include comparisons

of daily arrivals and waiting times.

3.1 Daily Arrivals

The arrival process drives the simulation. In order to accurately model ED operations

it is important that the number of patient arrivals in the simulation model each day

closely matches the observed number of patient ED arrivals each day at BIDMC from

2/1/05 to 1/31/06. This is especially important considering the increased strain that

is placed on ED resources when the arrival rate increases. Although staffing levels

can be raised somewhat to meet increased demand there is a fixed amount of space

available to observe, diagnose, and treat patients; as the number of arrivals increases,

the bottleneck effect on beds becomes more and more pronounced.

Figure 3-1 is a histogram of both the observed number of daily ED arrivals at

BIDMC from 2/01/05 to 1/31/06 and the number of daily arrivals in the simulation

model. In both cases the number of daily arrivals is between 115 and 140 patients a

majority of the time. Having less than 95 or greater than 165 patient arrivals per day
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in both cases occurs less than 4% of the time. The arrival process of the simulation

model appears to be a reasonable representation of reality.

Figure 3-1: Histogram of Number of Actual and Simulation Daily Arrivals.

3.2 Waiting Times

The time patients spend waiting is perhaps the most important indicator of how

closely the simulation model matches reality. Several parameters in the model such

as the arrival process, triage times, and time patients spend in diagnosis and treatment

are explicitly estimated from the data. But the waiting times are dependent on the

arrival process, triage times, waiting room priority, bed times, and bed cleaning times

and hence the waiting times are an aggregate indicator that the model structure and

parameters do not misrepresent the ED dynamics.

Note that because the Dashboard system does not include timestamps for the

triage process, the waiting times considered here represent the time from when a

patient first presents at the ED until that patient leaves the waiting room and is
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assigned a bed. Therefore triage times are included in waiting time for both the

historical data (where triage time is implicit) as well as the simulation model (where

triage time is explicit).

Table 3.1 and Table 3.2 show the waiting times for patients both historically at

BIDMC and in the simulation model. The average waiting time for all patients in

the simulation model is only 0.3% higher than the actual average waiting time. The

99th percentiles for both ESI-1 and ESI-2 patients are observed to be larger in reality

than predicted by the simulation. This may be due to data errors, such as incorrectly

labeled ESI or timestamp errors, or there may be some patients who initially presented

with critical symptoms but later stabilized and were able to safely wait until a bed

became available.
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Table 3.1: Actual Waiting Times (minutes).

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.3 1.5 11.5 50.4 57.3 53.5

Standard Deviation 56.3 7.3 18.3 61.4 58.4 59.9

99th Percentile 249.0 37.0 90.8 266.0 257.9 269.3

95th Percentile 163.0 7.9 37.0 183.0 176.3 164.5

90th Percentile 119.0 1.0 26.0 139.0 137.0 122.0

80th Percentile 68.0 1.0 17.0 87.0 94.0 86.0

50th Percentile 18.0 0.0 7.0 25.0 37.0 32.0

Table 3.2: Simulation Waiting Times (minutes).

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.4 1.4 12.8 50.4 56.1 53.7

Standard Deviation 53.8 9.7 14.3 58.1 59.2 56.9

99th Percentile 245.1 19.4 54.6 260.0 265.8 248.7

95th Percentile 154.0 7.0 34.9 168.5 178.0 173.7

90th Percentile 113.3 1.0 30.6 129.1 136.3 132.7

80th Percentile 69.7 1.0 20.4 86.3 92.3 90.8

50th Percentile 17.4 0.0 8.4 27.9 32.6 32.2
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Chapter 4

“What-if” Analyses

By effectively modeling the patient throughput process in the ED at BIDMC, we

are now able to analyze “what-if” scenarios that are important to ED staff and may

increase patient throughput. These “what-if” scenarios include adding extra beds,

reducing the bed “flip” times, investing in a point of care (POC) troponin test to

rapidly diagnose patients with chest pain, and adopting a policy of reserving extra

beds for more serious patients (a “nested” bed policy).

4.1 Additional Beds

The ED at BIDMC has identified beds as one of several limiting resources. In this

section, we consider the impact of adding extra beds using the simulation model.

For the simulation we use the flexible capacity criteria established in Section 2.4 to

determine the number of available beds. When we add an extra bed, this represents

an upward shift in the entire flexible capacity curve (see Figure 2-5), no matter how

large or small the size of the waiting room queue. Results for the additional bed

analysis are shown in Table 4.1. The addition of one bed is predicted to result in a

12.1% overall decrease in average waiting time, from 41.4 minutes to 36.4 minutes.

Also, reducing the amount of available beds by one a 14.8% overall increase in average

waiting time. Adding up to 4 additional beds would lead to a 37.1% overall decrease

in average waiting time. More extensive results including the predicted mean, stan-
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dard deviation, and percentiles of waiting times for each ESI level are contained in

Appendix A.1. For each of the scenarios, one bed is held in reserve for ESI-1 patients,

and bed “flip” times are those specified in the baseline model presented in Figure 2-2.

Table 4.1: Percent Change in Average Waiting Time from Baseline Bed Scenario.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

-1 Bed 14.8% 18.1% 5.9% 15.8% 14.3% 15.4%

Current 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

+1 Bed -12.1% -12.7% -5.1% -12.9% -11.7% -11.8%

+2 Beds -22.1% -23.8% -9.4% -23.5% -21.3% -22.0%

+3 Beds -30.3% -33.0% -13.2% -32.3% -29.2% -30.4%

+4 Beds -37.1% -39.9% -16.8% -39.4% -35.7% -36.9%

Note that we consider only small perturbations to existing conditions when propos-

ing policy changes. Undoubtedly adding many extra beds would require extra physi-

cians, nurses, technicians, and equipment to be able to assume the same service times

and thus predictions by this model for making large changes should be viewed with

less confidence. However, for small changes it is not unreasonable to believe that

service times will remain relatively constant.

4.2 Bed “Flip” Times

The time required for cleaning and reassigning beds is not readily available from the

data. However, there is evidence to suggest that several minutes are required from

when a patient leaves a bed until that bed is ready for the next patient to enter.

The “what-if” analysis in this section investigates the effect that reducing bed “flip”

times could have on patient waiting times. We consider reducing the bed “flip” times

by up to 25 minutes, although for each of the scenarios the bed “flip” times are not

reduced below 10.7 minutes which was found to be the fastest average bed “flip” time

when the waiting room is full (see Figure 2-2). Complete results for the analysis are

available in Table 4.2. A reduction of 5 minutes in the bed “flip” time is predicted
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to result in a 6.2% overall decrease in average patient waiting time, and a bed “flip”

time reduction of 10 minutes an 11.3% decrease in average patient waiting time. More

extensive results for the bed “flip” analysis including the predicted mean, standard

deviation, and percentiles of waiting times overall and for each ESI level are contained

in Appendix A.2.

Table 4.2: Percent Change in Average Waiting Time from Baseline Bed “Flip” Sce-
nario.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

+5 min 7.2% 8.7% 3.0% 7.6% 7.0% 7.5%

Current 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

-5 min -6.2% -6.2% -2.7% -6.6% -5.9% -6.3%

-10 min -11.3% -11.5% -5.2% -12.0% -10.8% -11.3%

-15 min -14.9% -14.5% -7.3% -15.8% -14.3% -14.8%

-20 min -18.0% -17.5% -9.1% -19.0% -17.2% -17.9%

-25 min -20.9% -19.0% -10.8% -22.1% -20.0% -20.7%

4.3 Point of Care Troponin Test

The physicians at BIDMC ED are considering a POC troponin test as a possible

way to increase throughput at BIDMC. This device would substantially reduce the

amount of time required to identify the troponin levels in patients with chest pain.

When troponin levels are sufficiently elevated it is a strong indication of cardiac

muscle damage. Of the 47,537 patients who presented to BIDMC ED from 2/1/05 to

1/31/06, 3185 patients had chest pain as a chief complaint. A smaller subset of 2632

patients had chest pain as a chief complaint and a troponin lab test.

There are several factors that affect the final disposition (i.e., discharge versus

admit) of patients in the ED. Physicians at BIDMC estimate that using a POC

troponin test could reduce the time required to determine the disposition of a chest

pain patient by at least 20 minutes up to 1 hour. Thus, to analyze the benefit of the

proposed POC troponin test, we reduce the simulated bed times for those patients
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on whom the troponin device would be used.

In order to simulate the arrival of patients with chest pain to the ED, a certain

fraction (Table 4.3) of each type of patient (ESI 1-5) was randomly assigned to be a

chest pain patient. For this fraction of patients, the time in bed is reduced to simulate

the effect the POC troponin test could have.

Table 4.3: Percentage of Patients Presenting with Chest Pain.

ESI Level Total Patients Chest Pain Patients % of ESI Level

All Patients 47537 3185 6.7%

ESI-1 1165 7 0.6%

ESI-2 10910 2003 18.4%

ESI-3 28372 1148 4.1%

ESI-4 6756 25 0.4%

ESI-5 332 2 0.6%

Table 4.4 shows the predicted effects of reducing the time required to determine

the disposition of chest pain patients. If ED physicians were able reduce the time

necessary to determine the disposition of troponin patients by 60 minutes using the

troponin test, average patient waiting time (for all patients, not just chest pain pa-

tients) is predicted to decrease by 5.3%. Note that reducing the diagnosis and treat-

ment time of a subset of patients reduces the average waiting time for all patients.

It is also important to note that the critical factor here is not how long it takes to

determine the troponin levels, but how long it takes to determine the disposition of

the patient. Certainly reducing the time to determine the troponin levels will help

reduce the time to determine disposition but other factors may affect this time as

well. More extensive results for the POC troponin analysis including the predicted

mean, standard deviation, and percentiles of waiting times overall and for each ESI

level are contained in Appendix A.3.

40



Table 4.4: Percent Change in Average Waiting Time from Baseline Chest Pain Diag-
nosis Scenario.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

+20 min 1.9% 2.2% 0.8% 2.0% 1.8% 2.1%

Current 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

-20 min -1.9% -1.2% -0.8% -2.0% -1.8% -1.8%

-40 min -3.7% -2.0% -1.5% -4.0% -3.6% -3.7%

-60 min -5.3% -4.1% -2.1% -5.7% -5.1% -5.1%

4.4 “Nested” Beds

The “nested” bed policy is based on the idea of reserving a certain number of beds

for patients of given acuity levels. This idea was motivated by the use of nested fare

classes in airlines as a way to maximize profit [6]. The current policy at BIDMC

is to reserve one bed for trauma patients who arrive via ambulance, most of whom

are ESI-1. These patients can occupy any bed in the ED if available, but no other

patients can occupy this one reserved bed. The “what-if” analysis in this section

extends that idea to both ESI-1 and ESI-2 patients, and to multiple beds. For the

following scenarios denoted “A-B”, A refers to the number of beds that are available

exclusively for ESI-1 patients and B refers to the number of beds that are available

for either ESI-1 or ESI-2 patients. To further clarify this policy, ESI-1 patients can

occupy any of the beds in the ED, ESI-2 patients can occupy any of the beds in the

ED except for the A beds, and ESI-3, 4, and 5 patients can occupy any of the beds

in the ED except for the A and B beds.

Results of the analysis are summarized in Table 4.5. Note that changing from the

current 1-0 policy to a 1-2 policy is predicted to increase overall average waiting

time by 0.2%, and average waiting time for ESI-3, ESI-4, and ESI-5 patients by

0.4%, but could reduce ESI-2 average waiting time by 2.5% and reduce ESI-1 average

waiting time by 0.3%. More extensive results for the “nested” bed analysis including

the predicted mean, standard deviation, and percentiles of waiting times overall and

for each ESI level are contained in Appendix A.4.
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Table 4.5: Percent Change in Average Waiting Time from Baseline 1-0 “Nested”
Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

0-0 -1.0% 11.3% -0.8% -1.0% -0.9% -1.1%

0-1 -1.0% 10.4% -2.0% -0.9% -0.9% -1.0%

0-2 -1.0% 10.4% -3.2% -0.8% -0.7% -0.9%

0-3 -0.9% 8.3% -4.4% -0.7% -0.6% -0.8%

0-4 -0.8% 8.5% -5.7% -0.5% -0.4% -0.6%

1-0∗ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

1-1 0.1% -0.1% -1.3% 0.2% 0.2% 0.1%

1-2 0.2% -0.3% -2.5% 0.4% 0.4% 0.4%

1-3 0.4% -0.1% -3.8% 0.7% 0.7% 0.7%

1-4 0.7% -0.5% -5.1% 1.1% 1.1% 1.1%

2-0 2.6% -5.2% 2.3% 2.7% 2.5% 2.7%

2-1 2.9% -4.5% 0.9% 3.1% 2.9% 3.2%

2-2 3.2% -4.5% -0.5% 3.5% 3.3% 3.8%

2-3 3.7% -3.9% -1.9% 4.2% 3.8% 4.4%

2-4 4.3% -3.5% -3.2% 5.0% 4.5% 5.1%

∗Current Scenario
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4.5 Combined Effects

In Sections 4.1 through 4.4, we have evaluated four separate policies in isolation to

estimate the respective isolated effect of implementing each policy. Another option is

to consider changing several policies simultaneously and estimating the overall effect.

For example, the ED staff could invest in a POC troponin device and create an extra

bed for patients to occupy. Table 4.6 shows the net effect that changing several policies

could have. Each policy change considered in Table 4.6 is in addition to policy changes

already made, thus, the first row shows predicted effects of adding an extra bed, the

second row shows the predicted effects of adding an extra bed and reducing the bed

“flip” time, etc. These changes were also added in descending order of impact (adding

an extra bed had the greatest impact, followed by reducing the bed “flip” times).

If the ED staff added an extra bed, reduced the bed cleaning time by 5 minutes,

invested in the POC troponin device, and reserved an additional bed for ESI-1 and

ESI-2 patients (a 1-1 nested bed policy), the average waiting time of each patient

is predicted to decrease by 21.4%. More extensive results for the analysis of these

combined effects including the predicted mean, standard deviation, and percentiles

of waiting times overall and for each ESI level are contained in Appendix A.5.

Table 4.6: Percent Change in Average Waiting Time from Baseline Scenario.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

+ Extra Bed -12.1% -12.7% -5.1% -12.9% -11.7% -11.8%

- 5 min Bed “Flip” -17.3% -18.1% -7.4% -18.5% -16.8% -16.8%

- 60 min Troponin -21.4% -21.4% -9.1% -22.8% -20.6% -20.9%

+ 1,1 Nested Policy -21.4% -22.0% -10.0% -22.7% -20.5% -20.9%

∗Each row indicates changes made in addition to those of previous rows.
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Chapter 5

Further Extensions

In addition to the policy changes already considered here, several other “what-if”

scenarios have been proposed and should be considered for future evaluation using the

simulation model. One such scenario involves determining the effectiveness of adding

a “Fast-Track” zone to the ED which exclusively administers to less acute patients.

Several hospitals have adopted this policy in order to reduce waiting time for patients

who generally have shorter lengths of stay. Nash et al. [18] found that utilizing

a fast-track area did lead to reduced overall waiting times. This policy presumes

to create space and reduce the number of people in the waiting room when the ED

becomes congested. BIDMC has tried this policy several times but for various reasons

the policy has never become permanent. By quantifying the predicted reduction in

waiting times by adding a “fast-track” zone, it may be possible to determine the

“level of indifference” in the BIDMC ED for reduced waiting times.

BIDMC ED has already taken steps to implement some of the proposals in this the-

sis, including adding an additional bed (by splitting one large room into two smaller

rooms) and reducing the bed “flip” times. Further work in this area could include

observing the new data after the proposed changes have taken effect to evaluate their

impact.

Another proposal for future evaluation is to identify key groups of patients who

cause significant delays to the system as a whole. For example, such groups might

include MRI patients or psychiatric patients. Identifying such groups and quantifying
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their above-average utilization of ED resources may provide motivation to discover

solutions and make improvements in the way ED personnel administer treatment

to these groups. BIDMC personnel have suggested that competition for imaging

equipment is a significant factor in lower patient throughput [10]. Green et al. [12]

have formulated the scheduling of competing radiology equipment as a dynamic-

programming problem. Such analyses could be extended to the BIDMC ED.

For the purposes of this thesis we have considered the reduction of patient wait-

ing time as the key indicator of improved patient throughput and the chief desirable

outcome. We have not considered the specific revenue implications of the policies and

changes we have proposed and analyzed. It has been shown that hospital accounting

departments generally underestimate the cost of outpatient visits to the ED [3]. Fu-

ture research could seek to quantify and predict the financial impact that the policy

changes might cause. For example, a study could be used to determine whether the

financial benefits gained by increasing patient throughput using the POC troponin

test would be worth the cost of purchasing the tests, or whether revenue implications

justify additional resources to increase bed capacity or reduce bed “flip” times.

A topic of significant interest to ED personnel is to identify the effect that external

factors have on ED waiting times. In this thesis we have only considered internal

solutions local to the ED to increase the patient throughput. There are many external

factors that cause delays within the ED, such as over-scheduling hospital inpatient

beds and limiting resources such as imaging equipment and hospital-wide lab facilities.

Unfortunately, these “external” causes of delay are harder to alleviate. While ED

personnel at BIDMC have significant power to make changes to policies within the

ED, it is a much larger challenge to influence hospital-wide policies and priorities. For

this reason it would be beneficial to quantify hospital-wide impacts of improved ED

operations. It is hoped that such evidence could help influence hospital management

to better evaluate the impacts of proposed improvements. Beliën et al. [4] have

developed a software system that shows the impact that the master surgery schedule

has on the rest of the hospital. It would be of interest to investigate the master

surgery schedule at BIDMC and investigate how changes might affect the availability
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of inpatient beds for ED patients waiting to be admitted.

One of the most significant external factors affecting patient throughput in the ED

at BIDMC is the number of inpatient beds that are available in the hospital. Bagust et

al. [2] investigate the effect that inpatient capacity has on an emergency department

and seek to quantify the risks of having insufficient capacity. When inpatient bed

availability is high, patients admitted to the hospital from the ED occupy ED beds

for a much shorter period of time. Conversely, when inpatient bed availability is low,

admitted patients can spend on average up to three extra hours waiting for a bed to

become available.

For each patient who is admitted to the hospital from the ED, there are two

components which constitute the time that patient occupies an ED bed. First, there

is an initial period when the patient is still being diagnosed and evaluated. Nurses

and physicians observe the patient, order lab tests and radiology exams, and gather

information about the patient’s condition until the physician is able to make a de-

termination about whether the patient should be admitted to the hospital or not. It

takes approximately 3.5 hours on average to make the decision to admit the patient.

Once the decision has been made that the patient should be admitted, coordina-

tion begins to take place between ED staff and other hospital departments to deter-

mine which department of the hospital the patient should be admitted to, whether or

not there is a bed available for the patient in that department, and what equipment

will be needed to facilitate the transfer. ED physicians and nurses will continue to

oversee the condition of patients for whom a bed has been requested until that patient

is moved to the hospital, but most of the active diagnostic work is done by ED staff

before the bed is requested.

It is this second component of the time in bed that is seriously affected by the

availability of inpatient beds. The hospital occupancy is defined as the percentage

of inpatient hospital beds that are full at a given time. When hospital occupancy is

less than 78.9% (approximately one-fourth of the time), patients wait 5.1 hours on

average to be admitted to the hospital once a bed has been requested. On the other

extreme, when hospital occupancy is greater than 86.5% (approximately one-fourth
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of the time), patients wait 8.0 hours on average to be admitted to the hospital once

a bed has been requested.

Figure 5-1 shows the average diagnosis time and average time waiting to be ad-

mitted for patients admitted from the ED to the hospital. The sum of these two

numbers is the total time a patient spends in an ED bed. The diagnosis time is mea-

sured from when the patient enters the bed until a hospital inpatient bed is requested

for that patient. The time waiting to be admitted is measured from when the hospital

inpatient bed has been requested until the patient leaves the ED. The diagnosis time

appears to be unaffected by the hospital occupancy level, meaning that regardless of

how many inpatient beds are available, it takes the same amount of time on average

for physicians at the BIDMC ED to make the decision to admit a patient. The av-

erage admission wait time, on the other hand, rises steadily as hospital occupancy

increases. This represents the time from when an inpatient bed is first requested for

an ED patient until that patient leaves the ED.

Figure 5-1: Effects of Inpatient Bed Availability on Admitted ED Patients.

Figure 5-2 shows the average time in bed for admitted patients and discharged
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patients as a function of hospital inpatient capacity. This figure also helps illustrate

the bottleneck effect that occurs as the number of available inpatient beds decreases.

The time in bed for patients who are discharged from the ED to go home appears

unaffected by inpatient capacity (as one would expect), but the time in bed for

admitted patients rises steadily as the number of occupied hospital beds increases.

These admitted patients spend several hours occupying ED beds, a limiting resource

on ED operations, when they should be admitted to the hospital. This can prevent

other waiting patients from being seen by ED doctors.

Figure 5-2: Effects of Inpatient Bed Availability on All ED Patients.

Further analysis might be extended to quantify the effect of increasing hospital

inpatient capacity or reserving extra space for ED patients. Garson et al. [11] have

found that patients would prefer to be boarded in inpatient hallway spaces rather

than ED hallway spaces. It is worth investigating whether the revenue implications of

increasing ED throughput would justify reserving or increasing inpatient bed capacity.
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Chapter 6

Conclusions

The Dashboard data collected and provided by BIDMC and the active assistance

and support by the ED staff, has allowed for extensive and accurate modeling of

ED operations. We have modeled patient arrivals using linear regression based on

time of day, day of the week, and previous arrivals with a resulting R2 value of 0.84.

We have modeled patient “flow” using discrete event simulation. We have calibrated

simulation parameters to match historical data provided by the BIDMC Dashboard

system from 2/1/05 to 1/31/06. Parameters include the arrival rates, triage times,

waiting room priority, bed assignment policy, number of beds available, patient bed

times, and bed cleaning times. Several indicators help validate the accuracy of the

simulation model when compared with the actual data including histograms of the

number of daily arrivals and the waiting times.

With this understanding of the arrival and “flow” of ED patients, we were equipped

to analyze several “what if” scenarios. The first such analysis quantified the impact

on patient waiting times of adding extra bed capacity to the ED. The addition of

one extra bed led to an estimated reduction in average patient waiting time of 12.1%.

Another “what-if” scenario estimated the effect of reducing the time required to “flip”

beds. Reducing this time by 5 minutes led to an estimated reduction in waiting time

of approximately 6% for the average patient, while reducing the bed “flip” time by

10 minutes led to an estimated reduction in average waiting time of 11%. A third

analysis estimated that reducing the time required to diagnose chest pain patients by
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60 minutes using a point of care troponin device would lead to a reduction in average

patient waiting time of 5.3%. A final proposal estimated the impact of reserving addi-

tional beds for patients arriving with more severe conditions. A 1-2 nested bed policy

was predicted to reduce waiting time for ESI-1 and ESI-2 patients by approximately

0.3% and 2.5%, respectively.

In addition to estimating the effects of implementing the proposed policies in

isolation, we also analyzed the effects of implementing several of them simultaneously.

Adding one bed, reducing the bed “flip” time by 5 minutes, using a POC troponin

device to reduce the time necessary to determine the disposition of chest pain patients

by 1 hour, and reserving an extra bed for ESI-1 and ESI-2 patients would result in

an estimated reduction in average waiting time of 21.4% per patient.

This modeling effort is novel in several ways. It relies on a relatively sophisticated

arrival module that includes a learning effect. The model is responsive to the state

of the system by including flexible capacity and faster service times as workload

increases. Most importantly, because the predicted waiting times generated by the

model closely match those observed in the data, the model can be used to evaluate

the impact of proposed policy changes. Future research should include investigating

the impact that hospital-wide policies have on the waiting times of ED patients and

quantifying the financial impact of proposed policy changes in the ED.

52



Appendix A

“What-If” Analyses Results

A.1 Additional Bed Analysis

Baseline Bed Scenario -1 Bed.
All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 47.5 1.7 13.5 58.4 64.1 61.9

Standard Deviation 60.9 11.4 15.6 65.4 66.5 64.6

99th Percentile 274.9 26.7 57.8 291.0 296.8 272.7

95th Percentile 174.7 7.6 36.8 190.7 199.7 195.9

90th Percentile 130.7 1.0 30.6 147.6 155.6 155.0

80th Percentile 81.6 1.0 21.9 101.8 108.1 106.4

50th Percentile 22.2 0.0 8.7 31.2 40.8 37.2

Baseline Bed Scenario.
All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.4 1.4 12.8 50.4 56.1 53.7

Standard Deviation 53.8 9.7 14.3 58.1 59.2 56.9

99th Percentile 245.1 19.4 54.6 260.0 265.8 248.7

95th Percentile 154.0 7.0 34.9 168.5 178.0 173.7

90th Percentile 113.3 1.0 30.6 129.1 136.3 132.7

80th Percentile 69.7 1.0 20.4 86.3 92.3 90.8

50th Percentile 17.4 0.0 8.4 27.9 32.6 32.2
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Baseline Bed Scenario +1 Bed.
All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 36.4 1.3 12.1 43.9 49.5 47.4

Standard Deviation 47.7 8.4 13.4 51.7 52.8 50.4

99th Percentile 219.8 15.2 51.3 234.0 240.8 223.6

95th Percentile 135.9 6.0 33.5 149.3 157.5 155.5

90th Percentile 98.3 1.0 30.6 112.9 120.6 117.0

80th Percentile 64.8 1.0 18.8 72.2 78.1 77.4

50th Percentile 16.8 0.0 8.4 22.2 29.4 26.4

Baseline Bed Scenario +2 Beds.
All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 32.3 1.1 11.6 38.5 44.2 41.8

Standard Deviation 42.5 7.4 12.5 46.1 47.4 44.5

99th Percentile 197.3 12.0 48.8 210.7 217.2 195.4

95th Percentile 120.3 5.5 31.6 132.5 141.3 136.5

90th Percentile 84.5 1.0 30.6 98.6 106.1 101.3

80th Percentile 58.5 1.0 17.2 64.8 77.4 64.6

50th Percentile 16.2 0.0 8.4 22.2 28.0 26.4

Baseline Bed Scenario +3 Beds.
All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 28.8 1.0 11.1 34.1 39.7 37.3

Standard Deviation 37.9 6.4 11.9 41.1 42.6 39.5

99th Percentile 178.2 12.0 46.1 189.4 196.9 178.2

95th Percentile 106.2 3.0 30.6 117.6 125.5 120.0

90th Percentile 76.9 1.0 30.6 85.2 92.5 89.6

80th Percentile 47.2 1.0 16.2 64.8 77.4 55.2

50th Percentile 13.8 0.0 7.7 16.8 22.2 21.0
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Baseline Bed Scenario +4 Beds.
All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 26.0 0.9 10.6 30.5 36.1 33.9

Standard Deviation 34.0 5.6 11.3 36.9 38.5 35.5

99th Percentile 161.0 12.0 43.7 171.6 179.8 166.2

95th Percentile 93.3 3.0 30.6 104.4 112.3 107.9

90th Percentile 64.8 1.0 30.6 72.5 79.4 77.7

80th Percentile 40.8 1.0 16.2 60.2 65.6 55.2

50th Percentile 12.6 0.0 6.6 16.8 22.2 21.0

A.2 Bed “Flip” Analysis

Baseline Bed “Flip” Scenario +5 Minutes.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 44.4 1.6 13.1 54.2 60.0 57.7

Standard Deviation 57.2 10.4 15.0 61.7 62.8 60.6

99th Percentile 259.5 22.0 56.5 275.0 280.2 261.8

95th Percentile 164.2 7.1 36.0 179.4 188.8 184.3

90th Percentile 121.9 1.0 30.6 138.5 145.8 142.3

80th Percentile 76.9 1.0 21.2 94.0 100.2 99.5

50th Percentile 20.4 0.0 8.4 31.2 40.4 37.2

Baseline Bed “Flip” Scenario.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.4 1.4 12.8 50.4 56.1 53.7

Standard Deviation 53.8 9.7 14.3 58.1 59.2 56.9

99th Percentile 245.1 19.4 54.6 260.0 265.8 248.7

95th Percentile 154.0 7.0 34.9 168.5 178.0 173.7

90th Percentile 113.3 1.0 30.6 129.1 136.3 132.7

80th Percentile 69.7 1.0 20.4 86.3 92.3 90.8

50th Percentile 17.4 0.0 8.4 27.9 32.6 32.2
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Baseline Bed “Flip” Scenario -5 Minutes.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 38.8 1.4 12.4 47.1 52.8 50.3

Standard Deviation 51.0 9.1 13.8 55.2 56.4 53.7

99th Percentile 235.0 15.3 52.6 250.9 256.5 236.3

95th Percentile 144.5 7.0 33.9 159.1 167.9 160.7

90th Percentile 105.4 1.0 30.6 120.6 128.0 122.9

80th Percentile 64.8 1.0 19.6 79.0 85.1 84.6

50th Percentile 16.8 0.0 8.4 22.2 29.4 26.4

Baseline Bed “Flip” Scenario -10 Minutes.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 36.7 1.3 12.1 44.3 50.0 47.6

Standard Deviation 49.0 8.7 13.4 53.2 54.4 51.6

99th Percentile 229.6 14.1 51.0 245.4 252.6 230.1

95th Percentile 137.5 6.0 33.1 151.6 160.8 156.2

90th Percentile 98.3 1.0 30.6 113.6 120.9 117.3

80th Percentile 64.8 1.0 18.7 72.1 78.0 77.6

50th Percentile 16.8 0.0 8.4 22.2 29.4 26.4

Baseline Bed “Flip” Scenario -20 Minutes.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 35.2 1.2 11.8 42.4 48.1 45.7

Standard Deviation 47.9 8.5 13.2 52.1 53.4 50.5

99th Percentile 227.0 13.0 49.8 242.6 249.2 226.1

95th Percentile 133.7 6.0 32.3 148.3 157.0 152.3

90th Percentile 93.7 1.0 30.6 109.2 117.1 112.3

80th Percentile 64.8 1.0 17.9 67.0 77.4 72.8

50th Percentile 16.8 0.0 8.4 22.2 29.4 26.4
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Baseline Bed “Flip” Scenario -25 Minutes.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 34.0 1.2 11.6 40.8 46.5 44.0

Standard Deviation 47.1 8.2 13.0 51.3 52.6 49.8

99th Percentile 225.0 12.0 49.0 240.5 247.1 225.0

95th Percentile 130.9 6.0 31.6 145.8 154.4 149.3

90th Percentile 89.7 1.0 30.6 105.9 113.7 108.3

80th Percentile 61.4 1.0 17.1 64.8 77.4 67.7

50th Percentile 16.2 0.0 8.4 22.2 28.2 26.4

Baseline Bed “Flip” Scenario -30 Minutes.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 32.8 1.2 11.4 39.3 44.9 42.5

Standard Deviation 46.3 8.1 12.8 50.6 51.8 48.9

99th Percentile 223.0 12.0 48.3 238.7 245.5 221.0

95th Percentile 127.8 6.0 30.9 143.2 151.3 148.1

90th Percentile 85.4 1.0 30.6 102.1 109.7 105.3

80th Percentile 56.2 1.0 16.5 64.8 77.4 62.1

50th Percentile 16.0 0.0 8.4 16.8 22.2 24.5

A.3 POC Troponin Test Analysis

Baseline Chest Pain Diagnosis Scenario +20 Minutes.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 42.2 1.5 12.9 51.4 57.1 54.7

Standard Deviation 54.7 9.8 14.5 59.0 60.2 58.0

99th Percentile 249.1 19.9 55.1 265.0 271.2 254.1

95th Percentile 156.7 7.0 35.2 171.5 180.5 176.8

90th Percentile 115.7 1.0 30.6 131.6 139.0 134.9

80th Percentile 71.6 1.0 20.7 88.2 94.3 92.5

50th Percentile 17.9 0.0 8.4 29.8 34.7 35.1

57



Baseline Chest Pain Diagnosis Scenario.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.4 1.4 12.8 50.4 56.1 53.7

Standard Deviation 53.8 9.7 14.3 58.1 59.2 56.9

99th Percentile 245.1 19.4 54.6 260.0 265.8 248.7

95th Percentile 154.0 7.0 34.9 168.5 178.0 173.7

90th Percentile 113.3 1.0 30.6 129.1 136.3 132.7

80th Percentile 69.7 1.0 20.4 86.3 92.3 90.8

50th Percentile 17.4 0.0 8.4 27.9 32.6 32.2

Baseline Chest Pain Diagnosis Scenario -20 Minutes.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 40.6 1.4 12.7 49.4 55.1 52.7

Standard Deviation 52.8 9.5 14.2 57.1 58.2 55.7

99th Percentile 240.7 18.9 54.2 256.0 262.2 242.2

95th Percentile 151.0 7.0 34.6 165.4 174.1 169.5

90th Percentile 111.0 1.0 30.6 126.6 133.3 130.4

80th Percentile 67.8 1.0 20.2 84.3 90.4 89.6

50th Percentile 17.4 0.0 8.4 25.8 30.5 30.2

Baseline Chest Pain Diagnosis Scenario -40 Minutes.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 39.9 1.4 12.6 48.4 54.1 51.7

Standard Deviation 51.9 9.4 14.0 56.1 57.3 54.6

99th Percentile 236.8 19.4 53.7 251.3 258.0 233.1

95th Percentile 148.3 7.0 34.5 162.5 171.8 167.8

90th Percentile 108.8 1.0 30.6 124.1 131.1 127.2

80th Percentile 66.0 1.0 20.0 82.2 88.1 87.3

50th Percentile 16.9 0.0 8.4 23.5 29.4 27.7
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Baseline Chest Pain Diagnosis Scenario -60 Minutes.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 39.2 1.4 12.5 47.5 53.2 50.9

Standard Deviation 51.0 9.2 13.9 55.2 56.4 53.7

99th Percentile 233.5 18.5 53.4 247.7 253.4 229.8

95th Percentile 145.9 7.0 34.3 159.7 168.9 163.3

90th Percentile 106.7 1.0 30.6 122.0 129.1 125.4

80th Percentile 64.8 1.0 19.8 80.4 86.3 85.9

50th Percentile 16.8 0.0 8.4 22.2 29.4 26.4

A.4 “Nested” Bed Policy Analysis

0-0 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.0 1.6 12.7 49.9 55.6 53.1

Standard Deviation 52.7 9.6 14.1 56.8 58.0 55.5

99th Percentile 237.5 23.5 54.4 251.5 257.6 237.9

95th Percentile 151.8 10.0 34.6 165.5 174.4 168.1

90th Percentile 112.6 1.0 30.6 127.8 134.9 131.7

80th Percentile 69.5 1.0 20.1 85.9 91.9 90.5

50th Percentile 17.4 0.0 8.4 27.6 32.3 32.1

0-1 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.0 1.6 12.5 49.9 55.6 53.1

Standard Deviation 52.8 9.6 14.1 56.9 58.2 55.6

99th Percentile 238.5 22.8 54.0 252.6 258.7 237.9

95th Percentile 151.9 10.0 34.3 165.8 174.8 167.7

90th Percentile 112.7 1.0 30.6 127.9 135.0 131.7

80th Percentile 69.5 1.0 19.7 85.9 91.9 90.5

50th Percentile 17.4 0.0 8.4 27.6 32.3 32.1
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0-2 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.0 1.6 12.3 50.0 55.7 53.2

Standard Deviation 53.0 9.6 14.1 57.1 58.3 55.7

99th Percentile 239.4 22.8 53.8 253.5 260.1 238.3

95th Percentile 152.2 9.7 33.7 166.2 175.2 169.0

90th Percentile 112.8 1.0 30.6 128.1 135.2 132.3

80th Percentile 69.5 1.0 19.3 86.0 92.0 90.3

50th Percentile 17.4 0.0 8.4 27.6 32.3 32.3

0-3 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.0 1.6 12.2 50.0 55.7 53.2

Standard Deviation 53.1 9.7 14.0 57.3 58.5 55.9

99th Percentile 240.3 21.3 53.5 255.0 261.8 238.9

95th Percentile 152.6 8.9 33.3 166.6 175.5 169.0

90th Percentile 112.9 1.0 30.6 128.2 135.3 132.5

80th Percentile 69.6 1.0 18.8 86.0 92.0 91.0

50th Percentile 17.4 0.0 8.4 27.6 32.3 32.3

0-4 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.1 1.6 12.0 50.1 55.8 53.3

Standard Deviation 53.3 9.7 14.0 57.5 58.7 56.1

99th Percentile 241.7 21.3 53.2 256.2 262.4 238.9

95th Percentile 153.1 8.9 32.8 167.2 176.2 171.6

90th Percentile 113.1 1.0 30.6 128.5 135.6 132.0

80th Percentile 69.6 1.0 18.3 86.1 92.3 91.0

50th Percentile 17.3 0.0 8.4 27.6 32.4 33.0
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1-0 “Nested” Bed Policy (Current Scenario).

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.4 1.4 12.8 50.4 56.1 53.7

Standard Deviation 53.8 9.7 14.3 58.1 59.2 56.9

99th Percentile 245.1 19.4 54.6 260.0 265.8 248.7

95th Percentile 154.0 7.0 34.9 168.5 178.0 173.7

90th Percentile 113.3 1.0 30.6 129.1 136.3 132.7

80th Percentile 69.7 1.0 20.4 86.3 92.3 90.8

50th Percentile 17.4 0.0 8.4 27.9 32.6 32.2

1-1 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.4 1.4 12.6 50.5 56.2 53.7

Standard Deviation 54.0 9.7 14.3 58.3 59.5 57.1

99th Percentile 246.3 19.1 54.2 261.6 266.6 254.1

95th Percentile 154.4 7.0 34.5 168.9 178.4 172.8

90th Percentile 113.5 1.0 30.6 129.4 136.7 132.6

80th Percentile 69.8 1.0 19.9 86.4 92.4 90.8

50th Percentile 17.4 0.0 8.4 27.9 32.7 32.4

1-2 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.5 1.4 12.4 50.6 56.3 53.9

Standard Deviation 54.2 9.7 14.3 58.5 59.7 57.4

99th Percentile 247.9 19.1 54.0 263.0 268.0 254.1

95th Percentile 155.0 7.0 34.0 169.6 179.0 172.9

90th Percentile 113.8 1.0 30.6 129.8 137.0 134.5

80th Percentile 69.8 1.0 19.5 86.5 92.5 91.0

50th Percentile 17.4 0.0 8.4 27.9 32.7 32.3
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1-3 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.6 1.4 12.3 50.8 56.5 54.1

Standard Deviation 54.5 9.8 14.2 58.8 60.0 57.7

99th Percentile 249.2 19.4 53.7 264.4 269.5 254.1

95th Percentile 155.7 7.0 33.5 170.4 179.9 174.4

90th Percentile 114.3 1.0 30.6 130.3 137.6 134.9

80th Percentile 70.0 1.0 19.1 86.7 92.8 91.4

50th Percentile 17.4 0.0 8.4 27.9 32.7 32.8

1-4 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.7 1.4 12.1 51.0 56.7 54.2

Standard Deviation 54.8 9.9 14.2 59.2 60.4 58.0

99th Percentile 250.9 19.1 53.6 266.5 271.6 255.0

95th Percentile 156.6 7.0 33.0 171.3 180.8 174.6

90th Percentile 114.8 1.0 30.6 130.9 138.3 135.1

80th Percentile 70.2 1.0 18.5 87.0 93.3 91.5

50th Percentile 17.4 0.0 8.4 28.1 32.9 33.0

2-0 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 42.5 1.4 13.1 51.7 57.5 55.1

Standard Deviation 56.2 10.1 14.8 60.8 62.0 59.8

99th Percentile 260.0 14.4 56.2 275.4 282.2 262.5

95th Percentile 160.3 6.0 35.8 176.4 185.1 181.4

90th Percentile 116.4 1.0 30.6 133.5 140.9 136.5

80th Percentile 70.7 1.0 21.1 87.9 94.2 92.1

50th Percentile 17.5 0.0 8.4 28.5 33.2 33.4
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2-1 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 42.6 1.4 12.9 51.9 57.7 55.4

Standard Deviation 56.5 10.2 14.8 61.1 62.3 60.2

99th Percentile 261.1 15.6 55.9 277.0 283.2 263.8

95th Percentile 161.1 6.0 35.3 177.4 186.0 182.2

90th Percentile 116.9 1.0 30.6 134.1 141.4 136.9

80th Percentile 71.0 1.0 20.6 88.2 94.7 92.5

50th Percentile 17.4 0.0 8.4 28.6 33.4 33.4

2-2 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 42.7 1.4 12.7 52.2 57.9 55.7

Standard Deviation 56.8 10.2 14.8 61.5 62.7 60.8

99th Percentile 262.8 15.6 55.5 278.9 285.1 264.8

95th Percentile 162.1 6.0 34.8 178.5 187.6 185.8

90th Percentile 117.5 1.0 30.6 134.9 142.3 139.7

80th Percentile 71.3 1.0 20.2 88.7 95.2 93.1

50th Percentile 17.4 0.0 8.4 28.7 33.5 33.5

2-3 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 42.9 1.4 12.5 52.5 58.2 56.0

Standard Deviation 57.3 10.4 14.8 62.0 63.1 61.4

99th Percentile 264.7 15.7 55.4 281.2 288.1 266.6

95th Percentile 163.3 6.0 34.3 179.9 188.5 187.1

90th Percentile 118.3 1.0 30.6 135.8 143.4 141.0

80th Percentile 71.8 1.0 19.7 89.3 95.8 94.1

50th Percentile 17.4 0.0 8.4 29.0 33.8 33.5
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2-4 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 43.2 1.4 12.3 52.9 58.6 56.4

Standard Deviation 57.8 10.5 14.8 62.5 63.7 61.8

99th Percentile 266.9 16.8 55.2 283.4 289.9 267.1

95th Percentile 164.9 6.0 33.8 181.5 190.3 188.0

90th Percentile 119.4 1.0 30.6 137.0 144.5 140.4

80th Percentile 72.4 1.0 19.1 90.1 96.4 94.5

50th Percentile 17.4 0.0 8.4 29.4 34.3 34.6

A.5 Combined Policy Analysis

Baseline Scenario.
All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 41.4 1.4 12.8 50.4 56.1 53.7

Standard Deviation 53.8 9.7 14.3 58.1 59.2 56.9

99th Percentile 245.1 19.4 54.6 260.0 265.8 248.7

95th Percentile 154.0 7.0 34.9 168.5 178.0 173.7

90th Percentile 113.3 1.0 30.6 129.1 136.3 132.7

80th Percentile 69.7 1.0 20.4 86.3 92.3 90.8

50th Percentile 17.4 0.0 8.4 27.9 32.6 32.2

Baseline Scenario +1 Bed.
All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 36.4 1.3 12.1 43.9 49.5 47.4

Standard Deviation 47.7 8.4 13.4 51.7 52.8 50.4

99th Percentile 219.8 15.2 51.3 234.0 240.8 223.6

95th Percentile 135.9 6.0 33.5 149.3 157.5 155.5

90th Percentile 98.3 1.0 30.6 112.9 120.6 117.0

80th Percentile 64.8 1.0 18.8 72.2 78.1 77.4

50th Percentile 16.8 0.0 8.4 22.2 29.4 26.4
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Baseline Scenario +1 Bed, -5 Minutes for Bed “Flip”.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 34.2 1.2 11.8 41.1 46.7 44.6

Standard Deviation 45.2 7.9 12.9 49.0 50.2 47.8

99th Percentile 210.3 12.0 50.1 224.1 230.8 213.9

95th Percentile 127.5 6.0 32.3 140.6 148.4 146.3

90th Percentile 91.1 1.0 30.6 105.1 112.9 109.6

80th Percentile 64.7 1.0 18.1 65.5 77.4 70.7

50th Percentile 16.8 0.0 8.4 22.2 29.4 26.4

Baseline Scenario +1 Bed, -5 Minutes for Bed “Flip,” -20 Minutes for Chest Pain

Diagnosis.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 32.5 1.1 11.6 38.9 44.5 42.4

Standard Deviation 43.0 7.5 12.6 46.6 47.9 45.2

99th Percentile 200.4 12.0 49.1 213.9 220.2 204.8

95th Percentile 120.6 6.0 31.8 133.4 141.4 138.1

90th Percentile 85.1 1.0 30.6 99.1 106.5 102.4

80th Percentile 59.5 1.0 17.4 64.8 77.4 66.0

50th Percentile 16.2 0.0 8.4 22.2 28.7 26.4

Baseline Scenario +1 Bed, -5 Minutes for Bed “Flip,” -20 Minutes for Chest Pain

Diagnosis, +1-2 “Nested” Bed Policy.

All ESI-1 ESI-2 ESI-3 ESI-4 ESI-5

Mean 32.6 1.1 11.5 39.0 44.6 42.5

Standard Deviation 43.1 7.5 12.6 46.8 48.1 45.4

99th Percentile 200.9 12.0 48.9 215.2 221.5 204.8

95th Percentile 120.8 5.3 31.4 133.7 141.7 138.5

90th Percentile 85.2 1.0 30.6 99.2 106.7 102.4

80th Percentile 59.5 1.0 17.0 64.8 77.4 66.0

50th Percentile 16.2 0.0 8.4 22.2 28.7 26.4
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